Perform Brain Score Linear Model Test
brainscore.lm_test.Rd
This function performs a linear model test on brain score data with the option to use various null models for comparison. It calculates gene set scores, performs linear modeling, calculates p-values, and identifies core genes.
Usage
brainscore.lm_test(
pred_df,
cov_df,
brain_data,
gene_data,
annoData,
gsScoreList.null = NULL,
cor_method = c("pearson", "spearman", "pls1c", "pls1w", "custom"),
aggre_method = c("mean", "median", "meanabs", "meansqr", "maxmean", "ks_orig",
"ks_weighted", "ks_pos_neg_sum", "sign_test", "rank_sum", "custom"),
null_model = c("spin_brain", "resample_gene", "coexp_matched"),
minGSSize = 10,
maxGSSize = 200,
n_cores = 0,
n_perm = 5000,
perm_id = NULL,
coord.l = NULL,
coord.r = NULL,
seed = NULL,
threshold_type = c("sd", "percentile", "none"),
threshold_value = 1,
pvalueCutoff = 0.05,
pAdjustMethod = c("fdr", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"none"),
matchcoexp_tol = 0.05,
matchcoexp_max_iter = 1e+06,
gsea_obj = TRUE
)
Arguments
- pred_df
Data frame of predictor variables.
- cov_df
Data frame of covariate variables.
- brain_data
Data frame of brain imaging data.
- gene_data
Data frame of gene expression data.
- annoData
Environment containing annotation data.
- gsScoreList.null
Precomputed list of gene set scores for the null model by brainscore/brainscore.hpc function. Default is NULL.
- cor_method
Character string specifying the correlation method. Default is 'pearson'. Other options include 'spearman', 'pls1c', 'pls1w', 'custom'.
- aggre_method
Character string specifying the aggregation method. Default is 'mean'. Other options include 'median', 'meanabs', 'meansqr', 'maxmean', 'ks_orig', 'ks_weighted', 'ks_pos_neg_sum', 'sign_test', 'rank_sum', 'custom'.
- null_model
Character string specifying the null model method. Default is 'spin_brain'. Other options include 'resample_gene', 'coexp_matched'.
- minGSSize
Integer specifying the minimum gene set size. Default is 10.
- maxGSSize
Integer specifying the maximum gene set size. Default is 200.
- n_cores
Integer specifying the number of cores to use for parallel processing. Default is 0.
- n_perm
Integer specifying the number of permutations. Default is 5000.
- perm_id
Optional permutation ID.
- coord.l
Optional left hemisphere coordinates.
- coord.r
Optional right hemisphere coordinates.
- seed
Optional random seed for generating perm_id.
- threshold_type
Character string specifying the threshold type for core genes. Default is 'sd'. Other options include 'percentile'.
- threshold_value
Numeric value specifying the threshold level. Default is 1.
- pvalueCutoff
Numeric value specifying the p-value cutoff for significant results. Default is 0.05.
- pAdjustMethod
Character string specifying the method ("fdr","holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "none") for p-value adjustment. Default is 'fdr'. see p.adjust for more details.
- matchcoexp_tol
Numeric value specifying the tolerance for matched coexpression. Default is 0.05.
- matchcoexp_max_iter
Integer specifying the maximum number of iterations for matched coexpression. Default is 1000000.
- gsea_obj
Logical specifying whether to return a GSEA object otherwise only a table will be returned. Default is TRUE.